sábado, 10 de julio de 2010

Variables

Las variables en la investigación, representan un concepto de vital importancia dentro de un proyecto. Las variables, son los conceptos que forman enunciados de un tipo particular denominado hipótesis. 

Variable independiente
Fenómeno a la que se le va a evaluar su capacidad para influir, incidir o afectar a otras variables.
Su nombre lo explica de mejor modo en el hecho que de no depende de algo para estar allí:

Es aquella característica o propiedad  que se supone ser la causa del fenómeno estudiado. En investigación experimental se llama así, a la variable que el investigador manipula.  Que son manipuladas experimentalmente por un investigador.

Variable dependiente
Cambios sufridos por los sujetos como consecuencia de la manipulación de la variable independiente por parte del experimentador. En este caso el nombre lo dice de manera explicita, va a depender de algo que la hace variar.
Propiedad o característica que se trata de cambiar mediante la manipulación de la variable independiente.
Las variables dependientes son las que se miden.

Por ejemplo:  Como influye la música clásica en la presión arterial de los pacientes.

Variable dependiente: "la presión arterial de los pacientes" (cambio sufrido por la variable independiente)
Variable independiente: "la música clásica" (que es la que manipula la variable dependiente)


Variable interviniente
Son aquellas características o propiedades  que de una manera u otra afectan el resultado que se espera y están vinculadas con las variables independientes  y dependientes. 

Las variables pueden ser clasificadas como cuantitativas o cualitativas:

    * Los datos cuantitativos medidos ya sea mucho o muchos de algo, representa una cantidad o un número.
    * Los datos cualitativos proporcionan etiquetas o nombres, observaciones.

Los datos cualitativos se pueden dividir en:
Variables nominales: Variables sin orden inherente o secuencia, en otras números que se utilizan como nombres (grupo 1, grupo de género ...), 2, etc
Variables ordinales: Las variables con una serie ordenada, por ejemplo, "No les gusta mucho, moderado, indiferente, desagrado."
Intervalo de variables: variables igualmente espaciados, por ejemplo, temperatura. La diferencia entre una temperatura de 36 grados y 37 grados se considera igual a la diferencia entre 37 º y 38º.
Relación de variables: Variables espaciadas por intervalos iguales con un verdadero punto cero, por ejemplo, edad.

Los datos cuantitativos se pueden dividir en:
Variable discreta: El conjunto de todos los valores posibles que consiste sólo en puntos aislados, por ejemplo, contar variables (1, 2, 3 ...). 
Variables continuas: El conjunto de todos los valores que consiste en intervalos, por ejemplo, 0-9, 10-19, 20-29 ... etcétera.

Relación entre variables

La forma de medir si existe asociación entre variables continuas es usando el coeficiente de correlación. Pero hay que tener siempre presente que este coeficiente sólo se aplica a variables continuas y sólo mide asociación lineal.
Es costumbre representar la variable dependiente en el eje vertical (ordenadas) y la independiente en el eje horizontal (abscisas). Cuando se estudia la relación entre dos variables, una puede considerarse causa y la otra resultado o efecto de la primera, siendo ésta una decisión teórica. Llamaremos variable exógena, o variable independiente a la que causa el efecto y variable endógena, o variable dependiente a la que lo recibe.

El caso (A) corresponde a la relación tal que al aumentar los valores de la variable independiente aumenta -en promedio- el valor de la variable dependiente. Cuando esto ocurre se dice que hay una relación lineal positiva.
El caso (B) representa otra relación de nuevo lineal, pero ahora negativa
El caso (C) representa una situación en la que no hay relación entre ambas variables. Decimos entonces que las variables son independientes.
El caso (D) muestra una relación entre ambas, pero no lineal.
La covarianza:
La covarianza es una medida de la asociación lineal entre dos variables que resume la información existente en un gráfico de dispersión. Véase que el plano de una representación gráfica posible puede dividirse en cuatro cuadrantes definidos por los dos ejes.
Se denomina primer cuadrante a la zona del gráfico donde ambas variables toman valores positivos. El segundo cuadrante corresponde a valores negativos de la primera variable y positivos de la segunda. El tercer cuadrante incluye los valores negativos de ambas variables y el cuarto es donde la primera variable toma valores positivos y la segunda valores negativos.
Para construir una medida de la asociación lineal a partir de estas propiedades, no sólo debemos atender la proporción de puntos en cada cuadrante, sino también la distancia en que esos puntos se alejan o no de su origen.
Si tenemos pares de observaciones ()()NNiiyxyx,,...,,, llamaremos covarianza entre x e y a la expresión
La covarianza será positiva cuando los puntos se encuentran en los cuadrantes impares Esto significa que ambas variables varían ene el mismo sentido.
La covarianza será negativa cuando los puntos estén en los cuadrantes pares. Esto significa que las variables varían en sentido contrario.
Finalmente, la covarianza será próxima a cero cuando no exista relación entre ambas variables o cuando, existiendo, la relación sea marcadamente no lineal.
El coeficiente de correlación:
La covarianza depende de las unidades de medida de las variables y se modificará si modificamos las unidades de medida de las variables. Esto hace que no sea útil comparar la covarianza de grupos diferentes de observaciones con unidades (o con escalas) de medición diferentes .
Por ejemplo, una covarianza de 1 medida en metros, se transforma en una covarianza de 100 medida en centímetros. Por lo tanto no tiene sentido decir que si la covarianza es grande, la relación es fuerte, ya que la covarianza cambiará si modificamos las unidades de medida de la variable.
Una medida de relación entre dos variables que resuma la información del gráfico de dispersión, y que no dependa de las unidades de medida, se puede construir dividiendo la covarianza por las desviaciones estándar de ambas variables.
Se define el coeficiente de correlación lineal r

Una correlación nos proporciona tres datos principales:
1) la existencia o no de una relación lineal entre las variables (si da diferente de cero)
2) la dirección de esta relación, si es que existe (por su signo positivo o negativo)
3) el grado de esta relación (por el valor absoluto del coeficiente).
Estos tres aspectos se dan, simultáneamente, con un solo valor.
La correlación, en última instancia, nos está indicando cómo varía o cambia una característica cuando la otra característica o variable asociada cambia. Indica si dos variables cambian o varían conjuntamente.

El coeficiente de correlación tiene las siguientes propiedades:
1) Cuando las variables están linealmente de forma exacta, el coeficiente de correlación s será igual a uno en valor absoluto.
2) Cuando las variables no estén relacionadas ( o no lo estén linealmente) entre sí, el coeficiente de correlación será cero.
3) El coeficiente no depende del orden en que se consideran las variables, es decir, r(x,y)=r(y,x)

4) -1 <= r <= 1

5) El coeficiente de correlación no se altera por transformaciones lineales de las variables.

DESCRIPCIÓN UNIVARIADA SEGÚN TIPO DE VARIABLE
http://www.liccom.edu.uy/bedelia/cursos/metodos/descripcion-univariada.pdf
 

13 comentarios:

  1. Efectivamente las variables identificadas en un proyecto de investigación representan un conocimiento de vital importancia con ello sabemos que son las concepciones con los que se forman los enunciados de un tipo particular que llamamos hipótesis

    ResponderEliminar
  2. Me parece un texto muy completo, me queda clara la diferencia entre variable dependiente e independiente.

    ResponderEliminar
  3. LEONCIO HERRERA GRIJALVA
    EL TEXTO CONTENIDO EN ESTE BLOG CONTIENE DE MANERA CLARA LO QUE SON LAS VARIABLES Y LOS DIFERENTES TIPOS DE VARIABLES QUE HAY, ADEMÁS AYUDARÁ A DESARROLLAR UN ANÁLISIS SOBRE LAS VARIABLES QUE GUIARÁN MI PROYECTO DE INVESTIGACIÓN

    ResponderEliminar
  4. el texto es interesante y me servira para definir la variables del proyecto de investigacion

    ResponderEliminar
  5. La información sobre las variables viene completo ya que te menciona sobre qué es una variable y los diferentes tipos de variables y sobre todo que me ayudará en mi proyecto de investigación.

    ResponderEliminar
  6. Me parece un texto conciso y que proporciona información valiosa que será de gran apoyo en la realización del proyecto de investigación.

    ResponderEliminar
  7. Considero que es un texto muy interesante, muy bien estructurado que nos proporciona informacion clara, concreta y concisa en donde se nos explica que es una varible, cuales son sus caracteristicas,como se clasifican y nos da ejemplos claros para indentificar dicha variable, pero sobre todo hace incapie que dicho concepto es de vital importacia dentro de un proyecto de investigacion por lo cual considero que no sera de grsn utilidad para la construccion de nuestras variables.

    ResponderEliminar
  8. la información proporcionada es muy precisa, ya que nos permite aclarar algunas dudas acerca de que es una variable y como se deben formular en nuestro trabajo de investigación. sin duda es una herramienta importante que nos sera de gran ayuda para continuar realizando el proyecto.

    ResponderEliminar
  9. CON ESTO ME QUEDA CLARO COMO DEBO REALIZAR MIS VARIABLES EN EL TRABAJO DE INVESTIGACION

    ResponderEliminar
  10. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  11. Este texto me ayudó a recordar el tema de las variables que ya había visto en la clase de estadística y también me ayudó a aclarar algunas dudas sobre cómo formular mis variables
    Yasmin A.

    ResponderEliminar
  12. MUCHAS GRACIAS POR LA AYUDA ,QUISIERA SABER MAS COMO PUEDO INTERPRETAR APARTE DE LAS VARIABLES QUE SON LOS INDICADORES

    ResponderEliminar
  13. muy interesante, me ha resultado excelente para entender como hacer las variables para mi investigación. muchas gracias

    ResponderEliminar